ECS455 Chapter 2 Cellular Systems

2.4 Traffic Handling Capacity and Erlang B Formula

Dr.Prapun Suksompong prapun.com/ecs455

Capacity Concept: A Revisit

- Q: If I have *m* channels per cell, is it true that my cell can support only *m* users?
- A:Yes and No
- Let's try one example.
- How often do you make a call?
 - 3 calls a day, on average. $\leftarrow \lambda_{1} = 3$ calls day
- How long is the call?
 - 10 mins (per call), on average. $\leftarrow H = \frac{1}{2} = 10$ mins (call)
 - So, one person uses

Capacity Concept: A Revisit

- If we can "give" the time that "User 1" is idle to other users,
 - then one channel can support users!!
- True? Not quite.
 - 50 users are OK if we have a way to "manipulate" all of them to not make calls when another user is using the channel.
 - Real users access the channel randomly.
 - (Call initialization/request times are random.)
 - So, can guarantee service for only one user.
 - If we allow > 1 users, then we (and the users) will have to deal with congestion.

```
busy signal
blocked call
```

New Concepts for a New Look at Capacity

- We can let more than one user share a channel by using it at different times.
- **Blocked call** happens if a user requests to make a call when all the channels are occupied by other users.
- Probability of (call) blocking: P_b
 - The likelihood that a call is blocked because there is no available channel.
 - 1%, 2%, 5%
- In which case, the number of users that a cell can support can exceed $S/_N$.
 - How much larger depends strongly on the value of $\rm P_b$ that can be tolerated.

5

Trunking

• Allow a large number (*n*) of users to **share** the relatively small number (m) of channels in a cell (or a sector) by providing access to each user, **on demand**, from a **pool** of available channels.

	Omnidirectional	120° Sectoring	60° Sectoring
#sectors/cell	1	3	6
#channels/sector	$m = \lfloor S/N \rfloor$	$m = \left\lfloor \frac{S}{N} / 3 \right\rfloor$	$m = \left\lfloor \frac{S}{N} / 6 \right\rfloor$

- Exploit the **statistical behavior** of users.
- Each user is allocated a channel on a per call basis, and upon termination of the call, the previously occupied channel is immediately returned to the pool of available channels.

Common Terms (1)

- **Traffic Intensity**: Measure of channel time utilization (traffic load / amount of traffic), which is the average channel occupancy measured in **Erlangs**.
 - Dimensionless
 - Denoted by *A*.
- Holding Time: Average duration of a typical call.

• Denoted by $H = 1/\mu$.

- **Request Rate**: The average number of call requests per unit time. Denoted by λ .
- Use A_u and λ_u to denote the corresponding quantities for one user.
- Note that $A = nA_u$ and $\lambda = n\lambda_u$ where *n* is the number of users supported by the pool (trunked channels) under consideration.

Common Terms (2)

- **Blocked Call**: Call which cannot be completed at time of request, due to congestion.
 - Also referred to as a **lost call**.
- Grade of Service (GOS): A measure of congestion which is specified as the probability of a call being blocked (for Erlang B).
 - The AMPS cellular system is designed for a GOS of 2% blocking.
 - This implies that the channel allocations for cell sites are designed so that, on average, 2 out of 100 calls will be blocked due to channel occupancy during the busiest hour.

Exercise

• Use the Erlang B formula to find P_b for the values of *m* and *A* specified in the table below.

$$P_{b} = \frac{A^{m}}{m!}$$

$$P_{b} = \frac{A^{i}}{m!}$$

$$P_{b} = \frac{A^{i}}{i!}$$

$$P_{b} = \frac{A^{i}}{2!}$$

$$P_{b} = \frac{A^{2}}{2!}$$

$$P_{b} = \frac{A^{2}}{2!}$$

$$A^{i} + A^{i} + A^{i} = \frac{A^{2}}{2!}$$

M/M/m/m Assumption

• Blocked calls cleared

11

- No queuing for call requests.
- For every user who requests service, there is no setup time and the user is given immediate access to a channel if one is available.
- If no channels are available, the requesting user is blocked without access and is free to try again later.
- Calls arrive as determined by a Poisson process.
- There are memoryless arrivals of requests, implying that all users, including blocked users, may request a channel at any time.
- There are an **infinite** number of users (with finite overall request rate).
 - The finite user results always predict a smaller likelihood of blocking. So, assuming infinite number of users provides a conservative estimate.
- The duration of the time that a user occupies a channel is *exponentially distributed*, so that longer calls are less likely to occur.
- There are *m* channels available in the trunking pool.
 - For us, *m* = the number of channels for a cell (C) or for a sector

Example 2.1

- an average call lasts two minutes \rightarrow $H = \frac{1}{2} = 2$
- the probability of blocking is to be no more than 1%. $P_{1} \leq 0.01$
- If there are a total of 399 traffic channels for a seven-cell reuse system, there will be 57 traffic channels per cell.
- From the Erlang B formula, can handle 44.2 Erlangs or 1326 calls per hour.

Erlang B Trunking Efficiency

Number of Channe's m	= 0.01	Capacity (Erla = 0.005 P	ngs) for GOS = 0.002	= 0 .1%
2	0.153	0.105	0.065	0.046
4	0.869	0.701	0.535	0.439
5	1.36	1.13	0.900	0.762
10	4.46	>2 ^{3.96}	3.43	3.09
20	12.0 🖌	11.1	10.1	9.41
24	15.3	14.2	13.0	12.2
40	29.0	27.3	25.7	24.5
70	56.1	53.7	51.0	49.2
100	84.1	80.9	77.4	75.2

[Rappaport, 2002, Table 3.4]

Example 3: System Design (1)

- 20 MHz of total spectrum.
- Each simplex channel has 25 kHz RF bandwidth.
- The number of duplex channels:

$$S = \frac{20 \times 10^6}{2 \times 25 \times 10^3} = 400$$
 channels

Two-ster rlan

different options.

- γ = 4
- Design requirements:
 - SIR $\geq 15 \text{ dB}$
 - $P_b \le 5\%$
- Goal: Maximize the number of users that can be supported by the system.
- Question:

•
$$N = \hat{s}$$

• Should we use sectoring?

21

Make sure that you understand where numbers in this table come from!

Example 3 (3)

		Omnidirection ₇ 1	120° Sectoring	60° Sectoring
	К	6	2	1
	Ν	7	3	3
	SIR [dB]	18.7	16.1	19.1
	#channels/cell	[400/7] = 57	[400/3] = 133	[400/3] = 133
	#sectors/cell	1	3	6
	m = #channels/sector	57	$\left\lfloor \frac{400}{3} / 3 \right\rfloor = 44$	$\left[\frac{400}{3}/6\right] = 22$
7	A [Erlangs]/sector	51.55	38.56	17.13
	A [Erlangs]/cell	51.55	38.56×3 - 115.68	$17.13 \times 6 = 102.78$
	#users/cell	18558	41645	37001

Assume that each user makes 2 calls/day and 2 min/call on average \rightarrow 1/360 Erlangs.

Conclusion: With $\gamma = 4$, SIR ≥ 15 dB, and Pb $\leq 5\%$, 120° sectoring with cluster size N = 3 should be used.

Example 3 (4): Remarks

	Omnidirectional	120° Sectoring	60° Sectoring
K	6	2	1
Ν	7	7	7
SIR [dB]	18.7	23.43	26.44
#channels/cell	[400/7] = 57	[400/7] = 57	[400/7] = 57
#sectors/cell	1	3	6
m = #channels/sector	57	$\left[\frac{400}{7}/3\right] = 19$	$\left[\frac{400}{7}/6\right] = 9$
A [Erlangs]/sector	51.55	14.31	5.37
A [Erlangs]/cell	51.55	$14.31 \times 3 = 42.94$	$5.37 \times 6 = 32.22$

For the same N, we see that 120° sectoring and 60° sectoring give much better SIR. However, sectoring reduces the trunking efficiency and therefore suffer reduced value of A.

Omnidirectional 120° Sectoring 60° Sectoring Κ 6 2 1 Ν 7 7 7 SIR [dB] 18.7 23.43 26.44 #channels/cell [400/7] = 57[400/7] = 57[400/7] = 57#sectors/cell 1 3 6 m = #channels/sector 57 $\left|\frac{400}{7}/3\right| = 19$ $\left|\frac{400}{7}/6\right| = 9$ A [Erlangs]/sector 51.55 14.31 5.37 51.55 A [Erlangs]/cell $14.31 \times 3 = 42.94$ $5.37 \times 6 = 32.22$

Idea: The values of SIR are too high for the cases of 120° sectoring and 60° sectoring. We can further reduce the cluster size. This increases the number of channels per cell and hence per sector.

	Omnidirectional	120° Sectoring	60° Sectoring
K	6	2	1
Ν	7	3	3
SIR [dB]	18.7	16.1	19.1
#channels/cell	[400/7] = 57	[400/3] = 133	[400/3] = 133
#sectors/cell	1	3	6
m = #channels/sector	57	$\left\lfloor \frac{400}{3} / 3 \right\rfloor = 44$	$\left\lfloor \frac{400}{3} / 6 \right\rfloor = 22$
A [Erlangs]/sector	51.55	38.56	17.13
A [Erlangs]/cell	51.55	38.56×3 = 115.68	17.13×6 = 102.78

24